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Abstract - In this paper, several numerical aspects of the resolution of a nonlinear ill-posed problem by a 
conjugate gradient method are presented. From an experimental situation, a thermal system described by a set of 
partial differential equations is considered. The parametric identification of an unknown moving heating source 
is performed by a conjugate gradient method which acts as a regularizing method. The interest of such a 
minimization method is shown for optimal sensor location and while the measurements are noisy disturbed.    

 
1.  INTRODUCTION 
This paper is dedicated to the problem of determining the time-history of the heat flux delivered by a mobile 
small-size heater acting on the front face of a sheet of metal by means of the time history of measured 
temperatures on the rear face. It is well known that such an inverse problem is ill-posed since solution is strongly 
affected by data errors : initial state, measurements bias, discrete approximation, … In the following paragraph, 
several techniques for regularizing and solving ill-posed problems are presented. Then the experimental situation 
is exposed and modeled. The conjugate gradient method is proposed for the resolution of the inverse problem 
and leads to iterative resolution of three well-posed problems: direct problem, sensitivity problem and adjoint 
problem. Numerical results are exposed and the effect of disturbing noises is investigated. Moreover, it is shown 
that the resolution of the sensitivity equations provides a strategy for the choice of relevant sensors. 

 
2.  ILL-POSED INVERSE PROBLEMS 
The problem of determining the input signal  of a dynamic system when only the output u y%  is known as 
inverse problem. Denoting by δy, the measurement error and F, the model structure, the measured data are 
related to the unknown inputs with the following relationship : 
 ( )y F u yδ= +%  (1)  

For the system studied hereafter, both the structure and the parameters values of the physical model are 
known prior to the measurement, contrariwise to blind inversion where the parameter values are also unknown. 
It is well-known that inverse problems are ill-posed. A problem is well-posed if it satisfies the three Hadamard 
conditions of existence, uniqueness and stability. If any of the previous conditions are not satisfied, then the 
problem is ill-posed. For continuous diffusive systems such the thermal process studied in this paper, the inverse 
operator is unbounded and the presence of measurement noise in the actual data makes the problem instable ; the 
inverse problem is then ill-posed. Overcoming the ill-posedness of inverse problem is known as regularisation. 
The key issue in solving inverse problems, is how to introduce just enough prior information to obtain a 
satisfactory result [4]. Several techniques for regularising and solving ill-posed problems have been proposed 
and used. One first simple idea consisted on choosing a restricted class of inputs : steps, band limited signals, 
polynomial bases … A more attractive technique, however, does not use constraint on the input signal structure 
but build a regularisation operator depending on a certain parameter χ, called the regularisation parameter. 
 ( ) ( )ˆ , arg minu R y J uχδ χ= =  (2) 

The family of operator yields a correct solution to the problem when both the regularisation parameter and 
the measurement errors tends to zero. 

 ( ) ( ) ( )2 ˆ, 0, ,y y y y u 2uδ ε χ δ α ε α ε∗ ∗∀ ∀ > ∃ ∃ − ≤ ⇒ − ≤% ε  (3) 

Tikhonov first suggested the use a smoothing function to account for prior information. The criterion used for 
identification writes then  

 ( ) ( ) ( )2
J u y F u uλ χ= − + ⋅Ω%  (4) 

where the smoothing function Ω(.) uses the derivative of the unknown input variable 

 ( ) ( ) 2

0

N
k

k
k

u uα
=

Ω = ⋅∑  (5) 
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In eqn. (4), the determination of the optimal value for the smoothing parameter remains an open problem. A 
commonly used procedure is based on the Morozov's discrepancy principle [5] and the references therein) : 
assuming that a bound δy on measurement errors statistics is known, the smoothing parameter χ* is chosen such 
that  

 ( ) 2
ˆF u y yδ− =%  (6) 

with ( )ˆ arg minu Jχ∗= u   (7) 

The use of the function (5) as prior information is not always convenient, for instance when the searched 
signal involves peaks. In such cases, a Bayesian inference is preferred and the regularised solution minimises a 
criterion of the following form  

 ( ) ( )( ) ( )1 2, 0,J u D y F u D u u= +%  (8) 

where the functionals D1 and D2 are derived from the statistical prior laws on measurement errors and the 
unknown parameters. In practice, the maximum entropy principle makes it possible to translate any prior 
knowledge on the unknown parameters and measurement noise to the probabilistic laws used in eqn. (8), see [4]. 

In the context of inverse heat conduction problems, an alternate regularisation procedure has been introduced 
in [2] : the iterative regularisation scheme with the gradient methods. The gradient methods are non-linear 
minimisation algorithms based on a limited expansion of the cost : they include the gradient method, the 
Newton, the Gauss-Newton and conjugate-gradient methods. The procedure consists on the minimisation of the 
following criterion based on the model-data discrepancy and where there is no smoothing function 

 ( ) ( ) 2
J u y F u= −%  (9) 

In order to minimize criterion (9), the gradient methods generate a series of solutions that satisfies the 
equation 
  1n n nu u dnβ+ = −  (10) 

The following properties for the gradient methods are given in [2]: 
Property 1 : When there is no measurement noise and the model used is correct, the series (10) converges to 

the true solution u . *

Property 2 : When the data are corrupted with the noise yδ , the following property is satisfied 

 0y Nδ ε∀ ∀ > ∃ 2

0
is stable and lim 0N

y
u u

δ
∗

→
Nu− →  (11) 

Equation (11) shows that there exists an iteration number N for which the approximate solution u  is 
regularised. The iteration number acts then as the smoothing parameter of equation (4). 

N

Property 3 : Some implicit formulas have been introduced in [2] in order to compute the optimal iteration 
number as a function of measurement noise and model error N(δy, δF). In fact, the actual errors remaining 
insufficiently known, the following heuristic is used : run iterations until the decrease of the criterion (9) 
becomes insignificant. As shown in Figure 1, the optimal iteration number is Nν . 
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Figure 1. Optimal iteration number in iterative regularisation procedure. 
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In the next sections, the iterative regularisation procedure is used with the conjugate-gradient method, in 
order to solve the inverse heat conduction problem.  

 
3. EXPERIMENTAL SITUATION AND DIRECT PROBLEM 
The experimental apparatus presented in this communication has been developed in order to investigate several 
applications, such as optimal control for welding processes, hardening of steel due to the thermal shock induced 
by high density of solar flux, optimal experiment design for tribometer. A circular moving heating source is 
moved in the horizontal plane, very closely to the underneath sheet of metal. The steel selected is a refractory 
NS30 steel, whose thermophysical properties are given in the following. The motion is obtained with accurate 
two step-by-step motors. The spatial uniformity of the temperature  heat source is controlled by mean of a water 
circulation around its support. In order to describe the temperature evolution of the sheet of metal heated by the 
circular source, a model is established.  

Let us denote by : 
• , the space variable, where  is the domain corresponding to the parallelepipedic sheet of 

metal. The surface of  is Γ . 

x ∈ Ω 3Ω ⊂
Ω ( ) [ ] [ ] [ ]{ }3

1 2 3, , 0;0.3 0;0.2 0;510x x x x −Ω = = ∈ × ×  

• [ ]0, ft T t∈ =  is the time variable, 600ft s=  

• ( , )x tθ  is the temperature and the initial temperature is constant : 0 293Kθ =  

• ( )ρ θ  the mass density ( ) , 3.kg m− ( ) 0.444 8121.3ρ θ θ= − +  

• ( )pc θ  the specific heat ( ) ,  1 1. .J kg K− − ( )
0.22 432.7 273 888

0.46 219.6 888 1300
p

if
c

if
θ θ

θ
θ θ

+ ≤⎧
= ⎨ + <⎩

≤
≤

• ( )λ θ  the thermal conductivity ( ) , 1 1. .W m K− − ( ) 0.0129 10.03λ θ θ= +  

•  the convective exchange coefficient which is quite difficult to estimate. For natural convection 
phenomena,  realistic values are proposed on the boundaries, 
h

• ε  the emissivity, is considered equal to 1  (while the surface of the material is black painted), 
• σ  the Stefan constant 8 25.67 10 . .W m K 4σ − −= −

m

, 
•  is the sub-domain of  corresponding to the spatial support of the circular heating source. 

The heating source is a disk on the upper face of the sheet of steel, denoted D(I(t),r), of center 
 and radius 

( )s tω ⊂ Γ Γ

( ) ( )[ cos sin 0.005]TI a t b tω φ ω φ= + + 0.01r = . Then sω  is formulated as follows : 

{ 1 2 1 2( , ,0.005) ( , ) ( ( ), )s }x x x x x D I t rω = = ∈ . Several trajectories are studied with the previous 

formulation : non moving, rectilinear, semi-circular, semi-ellipsoid. , b , a ω , φ  are given. 

•  the heat flux, taken constant on D(I(t),r) .  ( )tϕ
The thermal evolution of the material during the process is described by the following equations : 
• state equation :  

 ( ),x t T∀ ∈ Ω× ,    ( ) ( ) ( ) ( )( 0pc div grad
t
θρ θ θ λ θ θ∂ )− =

∂

uuuuur
 (12) 

• initial condition :   
 x∀ ∈ Ω ,    ( ) 0,0xθ θ=  (13) 

• heating condition : 

  ( ), sx t Tω∀ ∈ × ,    ( ) ( )t
n
θλ θ ϕ∂

− = −
∂
r  (14) 

• heat exchange condition :  

 ( ) ( ), sx t Tω∀ ∈ Γ − × ,    ( ) ( ) ( 44
0 0h

n
θ )λ θ θ θ εσ θ∂

− = − + −
∂
r θ  (15) 

where  is the normal vector exterior to the surface. nr

According to the previous notations, a nonlinear distributed parameter system (DPS) is considered and the 
direct problem can be formulated as follows : 

Problem : find the temperature dirP ( ),x tθ  solution of the nonlinear DPS {S}defined by eqns (12)-(15). 
Problem  is solved by a finite element method in space and finite differentiation in time.  dirP
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4. RESOLUTION OF THE INVERSE PROBLEM  
In the following, the resolution of the inverse problem consists in estimating the unknown magnitude ϕ(t) of the 
heat source while its trajectory and motion speed are known. 

 

 

Unknown 
time dependent 

heating flux

5 sensors on the lower face

inverse problem

source identification

 
Figure 2. Inverse problem. 

 
Heat flux is modeled as a time-varying function, by  

  (16) ( ) ( )
1

1

N

i i
i

tϕ ϕ ξ
−

=

= ∑ t

In the latter, iξ (.) is a time-dependent continuous piecewise linear function such that, for ti = 600j/N 

 for ,    1, ,j N= L ( )
1 if 

0 if 
i j

i j
t

i j
ξ

=⎧
= ⎨ ≠⎩

 (17) 

According to this notation, ϕ(0) = ϕ(600) = 0 W.m-2 and ϕ(t) is fully known when the coefficients ϕι, for i=1 
to N-1 are identified.  

Then the following inverse problem is considered : 
Problem : find ϕ = [ϕinvP 1, ϕ2, ..., ϕΝ−1]

T, which minimizes the cost function : 

  ( ) ( ) ( )(
5 2

1

1 ˆ, ;
2

s s
sT

)J x t t dtθ θ
=

⎛= −⎜
⎝ ⎠
∑∫ϕ ϕ ⎞

⎟  (18) 

where θs is the temperature measured at sensor s  ( 1, ,5s = L ) located on point xs ; with the constraint  
{θ (x,t) is solution of (S)}. 

 
4.1 General conjugate gradient algorithm 
The general conjugate gradient algorithm is as follows [1]: 
 
  Initialize:  , 0k =

         ϕ0 : initial approximation of ϕ,  
        0 0

1, , 1( ) ( ) ( )i NiJ J 0ϕ = −= −∇ = − ∂ ∂d Lϕ ϕ

k

: initial descent direction, 

  At iteration k : obtain next point and next descent direction, from point ϕk as follows : 
 arg min ( )k kJ

γ
γ γ

∈
= + dϕ  

 ϕk+1 = ϕk + γk dk

 ( ) ( )2 2
1k k kJ Jβ += ∇ ∇ϕ ϕ . 

 ( )1 1k kJ β+ += −∇ +d dϕ k k

)
 

  Stop the iterative process if   has reached the admissible level of minimization. ( 1kJ +ϕ
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Several numerical aspects have to be carefully investigated at each iteration  : k
• estimation of the cost-function : resolution of the direct problem (heat flux kϕ  is taken into account) in 

order to estimate ( ), ;sx tθ ϕ . 

• estimation of the gradient of the cost-function : resolution of the adjoint problem in order to estimate 
( )kJ∇ ϕ  and the descent direction. 

• estimation of the descent depth : resolution of the sensitivity problem in the descent direction. 
 

4.2 Adjoint problem for the gradient  calculation  
The gradient  verifies :  ( )J∇ ϕ

 

( )

( ) ( )

( ) ( )( ) ( )

( ) ( )( ) ( )

1

1

5

1

5

1

.

ˆ, ; , ;

ˆ, ; .

N

i
ii

j j j
jT

j j j
jT

J
J

J J

x t t x t dt

x t t d

δ δϕ
ϕ

δ

θ θ δθ

θ θ ζ δθ

−

=

=

=Ω

∂⎛ ⎞
= ⎜ ⎟

∂⎝ ⎠
= + −

⎛
= −⎜ ⎟

⎝ ⎠
⎛ ⎞

= −⎜ ⎟
⎝ ⎠

∑

∑∫

∑∫ ∫

ϕ ϕ ϕ

ϕ ϕ

ϕ dt

⎞

Ω

  (19) 

where ( )j xζ is the Dirac distribution of sensor .  j

Let ( , ,L )θ ϕ ψ  the Lagrangian associated to the minimization of the functional defined in eqn. (18) with 

constraints ( )S  : 

 ( ) ( ) ( ) ( ) ( )( ), , , ,L J c div gra
t
θ dθ ϕ ψ θ ϕ ψ ρ θ θ λ θ θ∂

= + −
∂

uuuuur
 (20) 

where ( ),x tψ  is a Lagrange multiplier and ,u v  is the scalar product in ( )( )2 2,L T L Ω . 

When ψ  is fixed then 

 
L LLδ δθ δϕ
θ ϕ

∂ ∂
= +

∂ ∂
 (21) 

The Lagrange multiplier ( , )x tψ  is chosen such that: 

  , 0
Lδθ δθ
θ

∂
∀ =

∂
  (22) 

Then according to the expression developed in [1], ( ),x tψ  has to satisfy the following equations: 

• state equation:  

 ( ),x t T∀ ∈ Ω× ,   ( ) ( ) ( ) ( ) ( )( ( )
5

1

ˆ, ; .j j
j

c x t
t

ψρ θ θ λ θ ψ θ α θ ζ
=

∂
− − ∆ = − −

∂ ∑ ) jt  (23) 

• final condition: 
 x∀ ∈ Ω ,   ( ), fx tψ 0=  (24) 

• boundary condition: 

 ( ), sx t Tω∀ ∈ × ,    ( ) ( )t
n
ψλ θ δθ ψδϕ∂

− = −
∂
r  (25) 

• boundary condition: 

 ( ) ( ), sx t Tω∀ ∈ Γ − × ,   ( ) ( 34h
n
ψ )λ θ ψ εσ θ∂

− = +
∂
r  (26) 

In order to determine the Lagrangian multiplier ( ),x tψ , the following adjoint problem is solved 

Problem : find the Lagrangian multiplier lagP ( ),x tψ solution of the DPS {Slag} defined by eqns (23)-(26). 

Considering ( ),x tψ  solution of {  and }lagS ( ),x tθ  solution of { }S , it becomes : 

 J Lδ δ=  (27) 

  
( )1

1

.

s

N

i
ii T

J
dtd

ω

δϕ ψδϕ
ϕ

−

=

∂⎛ ⎞
= −⎜ ⎟

∂⎝ ⎠
∑ ∫ ∫ Γ  (28) 
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Thus :  
( ).

i iT

J
dtdϕψ

ϕ ϕ
∂ ∂

= −
∂ ∂∫ Γ  (29) 

 
4.3 Calculation of the descent depth 

The determination of the descent depth kγ in the conjugate gradient algorithm is obtained by minimizing the 
criterion:  

 ( ) ((
5 2

1

1 ˆ, ;
2

k k kj j
jT

))x tθ γ θ
=

⎛ ⎞
+ −⎜

⎝ ⎠
∑∫ dϕ t dt⎟

)

 (30) 

 
The solution of (30) is given by  

 ( ) ( ) ( )( ) ( )(
5 5

2

1 1

ˆˆ , ; , ; , ;k k kj j j j
j jT T

kx t x t t dt x tγ δθ θ θ δθ
= =

⎛ ⎞ ⎛
= −⎜ ⎟ ⎜

⎝ ⎠ ⎝
∑ ∑∫ ∫ϕ ϕ ϕ dt

⎞
⎟
⎠

 (31) 

where  is the solution of the sensitivity problem ( ) ( ), ; kjj x tδθ ϕ sensP  in the direction kδ = dϕ .  

In order to determine the temperature variation resulting from a heat flux variation µδϕ , where µ is a scalar, 
we derive the following sensitivity equations, where the sensitivity function is defined as follows: 

  ( ) ( ) ( )
0

, ; , ;
, ; lim

x t x t
x t

µ

θ µδ θ
δθ

µ→

+ −
=

ϕ ϕ ϕ
ϕ  (32) 

Denote by : ( ), ;x tθ θ µδ+ = +ϕ ϕ ( ), ;x tθ θ= ϕ,  and ( ) ( ) ( ). . pa cρ= . . The evolution of  θ +  is described by 

the following equations: 
• state equation: 

  ( ),x t T∀ ∈ Ω× ,    ( ) ( ) ( )( 0a div grad
t

θθ λ θ θ
+

+ +∂ )+− =
∂

uuuuur
 (33) 

• initial condition: 
 x∀ ∈ Ω ,    ( ) 0,0xθ θ+ =  (34) 

• heating condition: 

  ( ), sx t Tω∀ ∈ × ,    ( ) ( ) t
n

θλ θ µδ
+

+ ∂
− = − +

∂
r ϕ ϕ ( )  (35) 

• heat exchange condition: 

 ( ) ( ), sx t Tω∀ ∈ Γ − × ,    ( ) ( ) ( 44
0 0h

n
θ )λ θ θ θ εσ θ

+
+ + +∂

− = − + −
∂
r θ  (36) 

By comparison between eqns (12)-(15) and eqns (33)-(36), the following equations are obtained : 
• state equation: 

 ( ),x t T∀ ∈ Ω× ,    ( )( ) ( )( ) 0a
t

θ δθ λ θ δθ∂
− ∆

∂
=  (37) 

• initial condition: 
 x∀ ∈ Ω ,    0δθ =  (38) 

• heating condition: 

 ( ), sx t Tω∀ ∈ × ,    ( )( )
n

λ θ δθ δ∂
− = −

∂
r ϕ  (39) 

• heat exchange condition: 

 ( ) ( ), sx t Tω∀ ∈ Γ − × ,   ( )( ) 34h
n

λ θ δθ δθ εσθ δθ∂
− = +

∂
r  (40) 

According to the previous notations, the sensitivity problem can be formulated as follows : 
Problem sensP : find the temperature variation ( ),x tδθ  solution of the linear DPS {Ssens} defined by 

equations (37)-(40) for given ϕ ,θ  and δϕ . 
Problems  and lagP sensP  are solved by the same numerical method which is implemented for . dirP
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5. NUMERICAL RESULTS  
In order to show the performances of the conjugate gradient method for the resolution of the previous nonlinear 
ill-posed problem, a numerical experiment with a given heat flux is considered and this leads to simulated 
measurements (see Figure 3). Disturbing noises are added to the simulated measurements shown on Figure 3. 
 

0 100 200 300 400 500 600
280

300

320

340

360

380

400

420

440

460

480

time in seconds

te
m

pe
ra

tu
re

 K

A

B

C

E

D

A

B

C

D

E

 
Figure 3. Simulated measurements. 

 
5.1 Regularizing effect of the conjugate gradient method 
In Figure 4, the evolution of the cost-function is presented : black line (without disturbing noises on the 
measurements), dashed line (with noisy disturbed measurements). Identification results are presented in Figure 5. 
- without disturbing noises on the measurements, numerical solution is shown at iteration 100, 
- with noisy disturbed measurements, numerical solution is shown at the admissible level of minimization 

(black line) and at iteration 100. 
Remarks : 

• From Figures 4 and 5 it can be seen that the conjugate gradient algorithm is an efficient regularization 
method. 

• Without disturbing noises on the measurements, the cost-function is well decreasing towards the good 
solution. 

• With noisy disturbed measurements, even if the cost-function is still decreasing, it is important to stop the 
algorithm at the admissible level of minimization in order to ensure stability for the estimated heat fluxes. 

 
5.2 Choice of the most relevant sensors 
Since the admissible level of minimization depends on the number of noisy disturbed measurements, the effect 
of disturbing noises can be reduced by taking into account less observations. In order to choose the most relevant 
sensors at each instant, the sensitivity functions can be considered.  

At each iteration of the minimization algorithm, the resolution of the sensitivity problem in the descent 
direction leads to the determination of the sensitivity functions. For example, in Figure 6, sensitivity function 
after the first iteration are shown. Thus, after the first iteration, most relevant sensors can be chosen. For 
example: for [ ]0,60t ∈  , the most sensitive sensor is E, for ( [ ]60, 220t ∈ →B), ( [ ]220,360t ∈ →A), 

( [ ]360,520t ∈ →D) ( [ ]540,600t ∈  →E). Such strategy has to be estimated at each iteration of the minimization 

algorithm and can lead to the choice of one or several sensors which provide the relevant observations of the 
state of the system. 
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Figure 4. Identification with noisy disturbed data. 
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Figure 5. Identification of the heat flux. 
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Figure 6. Sensitivity at iteration 1. 

 
6. CONCLUSIONS 
In this communication, we have investigated the determination of the time history of a moving heat flux on the 
upper surface of a metal sheet from temperature measurements on the rear surface via an iterative regularization 
method with the conjugate gradients. With numerical simulations obtained from the resolution of a partial 
differential equations in a three-dimensional geometry, we have shown the good performances of the conjugate 
gradient algorithm in such a complex ill-posed inverse problem while assuming noisy measurements. In 
addition, analysis of sensitivity functions at each step of the minimization algorithm leads to a correct strategy 
for system observations. Finally, a control loop can be implemented in order to avoid superposition of 
observations. As the continuation of this work, uncertainty on the sensor location might be taken into account as 
a nuisance parameter. Then an optimality criterion can be defined in order to estimate the unknown heat flux 
without the determination of the real position of the sensor [6]. Such an approach, which seems to provide an 
attractive alternative, has to be carefully investigated. The next issue is to find out what should be the sampling 
time interval. Its determination has to be connected to the speed of motion of the source which can be an 
unknown parameter for the inverse problem. 
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